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Abstract

Here, we give a simple proof of a new representation for orthogonal polynomials over triangular do-
mains which overcomes the need to make symmetry destroying choices to obtain an orthogonal basis for
polynomials of fixed degree by employing redundancy. A formula valid for simplices with Jacobi weights
is given, and we exhibit its symmetries by using the Bernstein–Bézier form. From it, we obtain the matrix
representing the orthogonal projection onto the space of orthogonal polynomials of fixed degree with respect
to the Bernstein basis. The entries of this projection matrix are given explicitly by a multivariate analogue
of the 3F2 hypergeometric function. Along the way we show that a polynomial is a Jacobi polynomial if
and only if its Bernstein basis coefficients are a Hahn polynomial. We then discuss the application of these
results to surface smoothing problems under linear constraints.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

This paper considers orthogonal polynomials over a triangular (or simplicial) domain, with
a mind to extending least-squares approximation methods to the multivariate setting (see the

∗ Fax: +649 445 0068.
E-mail address: waldron@math.auckland.ac.nz
URL: http://www.math.auckland.ac.nz/∼waldron.

0021-9045/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jat.2005.10.006

http://www.elsevier.com/locate/jat
mailto:waldron@math.auckland.ac.nz
http://www.math.auckland.ac.nz/~waldron


S. Waldron / Journal of Approximation Theory 140 (2006) 86–99 87

discussion in [10]). In the univariate case, these are given by the inner product

〈f, g〉� := �(�0 + �1)

�(�0)�(�1)

∫ 1

0
f (x)g(x) (1 − x)�0−1x�1−1 dx, �0, �1 > 0

with those for �j = 1 (Legendre polynomials) and �j = 1
2 (Chebyshev polynomials), i.e.,

〈f, g〉(1,1) =
∫ 1

0
f (x)g(x) dx, 〈f, g〉( 1

2 , 1
2 ) = 1

�

∫ 1

0
f (x)g(x)

dx√
1 − x2

,

the most relevant to least-squares methods. The linear polynomials �0(x) := 1−x and �1(x) := x

above are the barycentric coordinates of the interval (1-simplex) T = [0, 1].
For polynomials of d variables the interval [0, 1] is replaced by a d-simplex T (a triangle for

d = 2) with barycentric coordinates � = (�0, �1, . . . , �d), to obtain the inner product

〈f, g〉� := �(|�|)
�(�)

1

d! vold(T )

∫
T

fg��−1, � ∈ Rd+1, �j > 0. (1.1)

Let �s(R
d) be the space of polynomials of degree �s on Rd . Then P�

s the Jacobi polynomials
of degree s is defined to be the space of polynomials f of degree s with

〈f, g〉� = 0 ∀g ∈ �s−1(R
d).

In the univariate case (d = 1) this space is one dimensional, spanned by the orthogonal
projection of any polynomial of exact degree s onto it. The issues here are the choice of an
appropriate normalisation to give a neat form of the three term recurrence, and expressing the
orthogonal polynomial in terms of a (2F1) hypergeometric function.

In the bivariate (and multivariate) case dim(P�
s ) = (

s+d−1
d−1

)
> 1, d > 1, s > 0, and so some

orthogonal-type expansion must be developed for it (see, e.g., [7]). Let us consider the issues
involved here in the concrete case of the bivariate (d = 2) quadratic (s = 2) Legendre (�j = 1)

polynomials on the standard triangle T := {(x, y) : x, y�0, x + y�1}, which has barycentric
coordinates x, y, 1 − x − y. A natural candidate for an orthogonal basis would be the orthogonal
projection of the Bernstein basis

x2, y2, (1 − x − y)2, 2xy, 2x(1 − x − y), 2y(1 − x − y)

onto Q the space of quadratic Legendre polynomials, since these Legendre polynomials are
invariant under the symmetries of the weight (the affine changes of variables which map the
triangle T to itself). But there are six of these functions and Q has dimension three! What can one
do? Appell [1] suggests taking a subset: those corresponding to x2, y2, 2xy (those not involving
one of the barycentric coordinates). These are not orthogonal to each other: but they are invariant
under a subgroup of the symmetries of the weight—enough to develop general formula for them
and the dual basis. Proriol [11] suggests giving up on having any symmetries and obtains an
orthogonal basis explicitly. The cost is that the (recursive) formulae are very complicated, and so
of limited utility for computations. Here, Prorial’s polynomials are the orthogonal projections of
x2 + y2 + 2xy, x2 − y2, x2 − y2 − 4xy onto Q.

In this paper, we advocate a new approach: to write f ∈ Q as a sum of its orthogonal projections
onto all six functions. The resulting formula is what is called a tight frame expansion (see [3]).
It has a simple form since, e.g., the orthogonal projections of x2, y2, (1 − x − y)2 are obtained
from each other by applying a symmetry of the weight (interchanging barycentric coordinates).
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We advocate that having a simple formula which reflects the symmetries of the weight and so
allows stable calculations (see [9]) outweighs the cost of dealing with more functions than needed
for a basis.

The paper is set out as follows. In the remainder of this section we give some basic definitions
and facts. In Section 2, we investigate the Bernstein–Bézier coefficients of Jacobi polynomials.
It turns out that these are Hahn polynomials and can be characterised by certain dependencies of
the coefficients which can be expressed in terms of the adjoint of the degree elevation operator.
In Section 3, we give a tight frame representation for the space of Jacobi polynomials which
reflects the symmetries of the weight and discuss its use. The proof given is based on the fact that
the Jacobi polynomials are eigenfunctions of the Bernstein–Durrmeyer operator. We conclude
by presenting some additional consequences of the results including their application to surface
smoothing problems.

Throughout � = (�0, �1, . . . , �d) will be the barycentric coordinates of a d-simplex T ⊂ Rd

(the convex hull of d + 1 affinely independent points in Rd ) with volume vold(T ). We use
standard multi-index notation, e.g., in (1.1) we have ��−1 = ��0−1

0 ��1−1
1 · · · ��d−1

d , |�| = ∑
j �j

and �(�) = ∏
j �(�j ). The normalisation is chosen so that

〈��, ��〉� = (�)�+�

(|�|)|�|+|�|
, �, � ∈ Zd+1+ , (1.2)

where (�)� := ∏
j (�j )�j

, with (x)n := x(x + 1) · · · (x + n − 1) the Pochhammer symbol.

Each polynomial f ∈ �n(R
d) can be expressed in terms of the Bernstein basis

f =
∑
|�|=n

c�(f )B� =
∑
|�|=n

c�B�,

where the Bernstein polynomials of degree n are defined by

B� :=
(|�|

�

)
�� = |�|!

�! �� = n!
�! ��, |�| = n, � ∈ Zd+1+ .

This basis for �n(R
d) is ideally suited to representing polynomials on the simplex T (see [2]),

and c(f ) = cn(f ) = (c�)|�|=n are referred to as the Bernstein(–Bézier) coefficients. By the
multinomial theorem

f =
∑
|�|=n

c�B� =
∑
|�|=n

c�B�

(
d∑

i=0

�i

)j

=
∑

|�|=n+j

(Rj c)�B�,

where the powers of the degree raising operator R are given by

(Rj c)� =
∑
|�|=j

(
j

�

)
(−�)�

(−|�|)j c�−�, j = 0, 1, 2, . . . . (1.3)

2. Jacobi polynomials and their Bernstein coefficients

Here, we think of functions c : � 	→ c� defined on the simplex points

Sn := {� ∈ Zd+1+ : |�| = n},
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such as the Bernstein coefficients of f ∈ �n(R
d), as polynomials of degree n in d-variables.

This is done by identifying c with the unique polynomial of degree n on the d-dimensional affine
subspace {x ∈ Rd+1 : x0 +x1 +· · ·+xd = n} which takes the value c� at � ∈ Sn. For example, by
the multinomial theorem f = 1 = ∑

|�|=n B�, and so 1 corresponds to the constant polynomial
c : � 	→ 1. More generally we have:

Proposition 2.1. Let f = ∑
|�|=n c�B� ∈ �n(R

d) and 0�s�n. Then f has degree s if and only
if c : � 	→ c� is a polynomial of degree s.

Proof. The polynomials B�, |�| = s, are a basis for �s(R
d), and can be expressed

B� =
∑
|�|=s

b�B�, b� :=
{

1, � = �,
0 otherwise.

Let j := n − s. Then by (1.3) the Bernstein coefficients of B� = ∑
|�|=n c�B� are

c� = (Rjb)� =
∑
|�|=j

(
j

�

)
(−�)�

(−|�|)j b�−� = j !
(� − �)!

(−�)�−�

(−n)j
= j !(−1)j

(−n)j

(−�)�

(−�)�

since (−�)�−�(−�)� = (−�)�(−� + �)�−� and (� − �)! = (−1)j (−� + �)�−�.
But Sn → R : � 	→ (−�)�, |�| = s are a basis for the space of polynomials of degree s, and so

we obtain the stated correspondence. �

We define an inner product on the space of polynomials Sn → R of degree n by

〈f, g〉�,n :=
∑
|�|=n

(�)�
�! f (�)g(�). (2.2)

The corresponding orthogonal polynomials of degree s are called Hahn polynomials, and we
denote the space of them by P�,n

s , 0�s�n. We now show that a polynomial is a Jacobi polynomial
if and only if its Bernstein coefficients are a Hahn polynomial.

Theorem 2.3. Let f = ∑
|�|=n c�B� ∈ �n(R

d) and 0�s�n. Then f ∈ P�
s if and only if

c ∈ P�,n
s , i.e., c : � 	→ c� is a polynomial of degree s, and

〈c, p〉�,n =
∑
|�|=n

(�)�
�! c�p(�) = 0,

for all polynomials p : Sn → R of degree < s.

Proof. f ∈ P�
s if and only if it is orthogonal to the spanning set g = ��, |�| < s for �s−1(R

d),
i.e., by (1.2)

〈f, g〉� =
∑
|�|=n

c�
n!
�!

(�)�+�

(|�|)|�|+|�|
= n!

(|�|)s+|�|

∑
|�|=n

(�)�
�! c�(� + �)� = 0.

The result follows since p : � 	→ (� + �)�, |�| < s span the space of polynomials of degree
< s. �
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This interpretation of the Hahn polynomials as the Bernstein coefficients of the Jacobi poly-
nomials was found by Ciesielski [4] in the univariate case. By choosing specific p the condition
on the Bernstein coefficients can be related to R∗

� the adjoint of the degre raising operator with
respect to (2.2), which is defined by

〈Rc, b〉�,n = 〈c, R∗
�b〉�,n−1, c : Sn−1 → R, b : Sn → R.

Choose 0�j �n. Then for c : Sn−j → R and b : Sn → R we calculate

〈Rjc, b〉�,n =
∑
|�|=n

(�)�
�! (Rj c)�b� =

∑
|�|=n

(�)�
�!

∑
|�|=j

(
j

�

)
(−�)�

(−|�|)j c�−�b�

=
∑

|�|=n−j

∑
|�|=j

(�)�+�

(� + �)!
(

j

�

)
(−� − �)�

(−n)j
c�b�+�

=
∑

|�|=n−j

(�)�
�! c�

∑
|�|=j

�! (� + �)�

(� + �)!
(

j

�

)
(−� − �)�

(−n)j
b�+�,

and so the powers of the adjoint of R are given by

((R∗
� )j b)� =

∑
|�|=j

�! (� + �)�

(� + �)!
(

j

�

)
(−� − �)�

(−n)j
b�+� =

∑
|�|=j

(� + �)�

(
j

�

)
(−1)j

(−n)j
b�+�

=
∑
|�|=j

(� + �)�
(|�| + 1)j

(
j

�

)
b�+�. (2.4)

Corollary 2.5. Let f = ∑
|�|=n c�B� ∈ �n(R

d), 0�s�n. Then f ∈ P�
s if and only if

(R∗
� )n−s+1c = 0.

Proof. Take p : � 	→ (−�)�, |�| = s −1 which are a basis for the space of polynomials of degree
< s. With k := n − |�| = n − s + 1, we calculate

〈c, p〉�,n =
∑
|�|=n

(�)�
�! c�(−�)� =

∑
|�|=n
���

(�)�
�! c�(−�)� =

∑
|�|=k

(�)�+�

(� + �)! c�+�(−� − �)�

= (�)�
∑
|�|=k

(� + �)�c�+�
(−� − �)�
(� + �)! = (�)�

∑
|�|=k

(� + �)�c�+�
(−1)|�|

�!

= (�)�
(−1)s−1

k! (s)k
∑
|�|=k

(� + �)�

(|�| + 1)k
c�+�

k!
�! = (�)�(−1)s−1

(
n

s − 1

)
((R∗

� )kc)�,

which is zero for all |�| = s − 1 if and only if (R∗
� )kc = 0. �

For Legendre polynomials (�j = 1) and s = n this result appears as Lemma 7 in [10].
The association of the (possibly degree raised) Bernstein coefficients of f ∈ P�

s with a Hahn
polynomial preserves the respective inner products.
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Theorem 2.6. Let f = ∑
|�|=n c�(f )B�, g = ∑

|�|=n c�(g)B� and 0�s�n. If f or g belongs
to P�

s , then we have

〈f, g〉� = (n!)2

(n − s)!(|�|)n+s

∑
|�|=n

(�)�
�! c�(f )c�(g) = (n!)2

(n − s)!(|�|)n+s

〈c(f ), c(g)〉�,n.

Proof. We will use the multivariate Chu–Vandermonde identity (see [7, �1.2]) in the form

(�)�+�

(�)�(�)�
= (� + �)�

(�)�
= 2F1(−�, −�; �; 1) =

∑
�

(−�)�(−�)�

(�)��! .

Suppose, without loss of generality that f ∈ P�
s , and write

f =
∑
|�|=s

a�B�, g =
∑
|�|=n

b�B�,

i.e., c(f ) = Rn−sa, c(g) = b. Then, by (1.2) and Chu–Vandermonde

〈f, g〉� = s!n!
∑
|�|=s

∑
|�|=n

a�

�!
b�

�!
(�)�+�

(|�|)s+n

= s!n!
(|�|)n+s

∑
|�|=s

∑
|�|=n

a�

�!
b�

�! (�)�(�)�
∑
�

(−�)�(−�)�

(�)��!

= s!n!
(|�|)n+s

∑
|�|=s

(�)�
�! a�

∑
|�|=n

(�)�
�! b�

∑
���
���

(−�)�(−�)�

(�)��! .

Since p : � 	→ (−�)� is a polynomial of degree |�|�s (���), Theorem 2.3 (with n = s) implies
that all terms except those with � = � vanish, and so we obtain

〈f, g〉� = s!n!
(|�|)n+s

∑
|�|=s

(�)�
�! a�

∑
|�|=n

(�)�
�! b�

(−�)�(−�)�

(�)��!

= s!n!
(|�|)n+s

∑
|�|=n

(�)�
�! b�

∑
|�|=s
���

a�
(−�)�

(−�)�
.

Let j := n − s. Since (−�)�−�(−�)� = (−�)�(−� + �)�−�, the last sum above becomes∑
|�|=s
���

a�
(−�)�

(−�)�
=
∑
|�|=s
���

a�
(−�)�−�

(−(� − �))�−�
=
∑
|�|=j

a�−�
(−�)�

(−�)�

= (−1)j

j !
∑
|�|=j

(
j

�

)
(−�)�a�−�= (−1)j

j ! (−n)j (R
ja)�= n!

s!(n−s)! c�(f ),

and we obtain the result. �

For Legendre polynomials (�j = 1) this is Lemma 6 of [10].
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Corollary 2.7. Let f = ∑
|�|=j c

j
�(f )B�, g = ∑

|�|=k ck
�(g)B�. If f or g belongs to P�

s , where
s� max{j, k}�n, then

〈f, g〉� = (n!)2

(n − s)!(|�|)n+s

〈Rn−j cj (f ), Rn−kck(g)〉�,n.

3. Tight frames with symmetries for the Jacobi polynomials

A tight frame for a finite dimensional Hilbert space H, such as P�
s , is a sequence of vectors

(�j ) in H for which

f =
∑
j

〈f, �j 〉�j ∀f ∈ H. (3.1)

Clearly, an orthonormal basis is a tight frame. There do exist tight frames with more vectors than
needed for a basis, e.g., three equally spaced vectors in R2 (see, e.g., [5]).

Proriol’s orthonormal basis for P�
s involved complicated formulae since the symmetries of P�

s

were not utilised. Here, we give a tight frame for P�
s which does have the natural symmetries, and

hence has a simple form. Since (3.1) is technically similar to an orthogonal expansion—it simply
has more terms—we feel this is a worthwhile advance.

The simple construction (which eluded the author for years) given here is based on the Bernstein–
Durrmeyer operator M�

n (see [6,8]). This is defined on the continuous functions on the simplex T
with the Jacobi inner product (1.1) by

M�
nf :=

∑
|�|=n

〈f, ��〉�
〈1, ��〉� B� =

∑
|�|=n

〈f, ��〉� (|�|)n
(�)�

n!
�!�

�.

It is easily shown this is self-adjoint and (see [6]) that it has eigenvalues

�s(M
�
n) = n!

(n − s)!
1

(n + |�|)s , 0�s�n,

with corresponding eigenspace the space of Jacobi polynomials P�
s , i.e., for 0�s�n

f = (n − s)!(|�|)n+s

∑
|�|=n

1

�!
��

(�)�
〈f, ��〉� ∀f ∈ P�

s . (3.2)

Let Qs be the orthogonal projection onto P�
s . Then, for f ∈ P�

s ,

〈f, ��〉� = 〈Qsf, ��〉� = 〈f, Qs(�
�)〉�,

and so from (3.2) we obtain

f = (n − s)!(|�|)n+s

∑
|�|=n

1

�!
��

(�)�
〈f, Qs(�

�)〉�

= (n − s)!(|�|)n+s

∑
|�|=n

(�)�
�!

Qs(�
�)

(�)�

〈
f,

Qs(�
�)

(�)�

〉
�
. (3.3)

Thus by computing Qs(�
�) explicitly, we obtain the desired tight frame for P�

s .
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Lemma 3.4. Suppose that |�| = n. Then for any index �,

∑
|	|=s

(−�)	(−	)�

	! = (−1)s
n!

s!(n − s)! (−�)�
(−s)|�|
(−n)|�|

.

Proof. The terms in the sum are nonzero only if ��	��. Hence, the result holds for ���, and
it suffices to prove it for the case ���.

Suppose that ���. For ��	��,

(−	)� = (−1)|�|	!/(	 − �)!, (−�)	 = (−�)�(−� + �)	−�,

and so, by the multinomial theorem, we have∑
|	|=s

(−�)	(−	)�

	! =
∑
|	|=s

��	��

(−�)	(−	)�

	! = (−1)|�|(−�)�

(s−|�|)!
∑
|	|=s

��	��

(s−|�|)!
(	−�)! (−�+�)	−�

= (−1)|�|(−�)�

(s − |�|)! (−n + |�|)s−|�|.

Furthermore, since |�|� |	| = s� |�| = n,

(s − |�|)! = (−1)s−|�|(−s + |�|)s−|�|,
(−n + |�|)s−|�|
(−s + |�|)s−|�|

= (−n)s

(−s)s

(−s)|�|
(−n)|�|

,

and so we can rearrange this to obtain

∑
|	|=s

(−�)	(−	)�

	! = (−1)s(−�)�
(−n)s

(−s)s

(−s)|�|
(−n)|�|

= (−1)s
n!

s!(n − s)! (−�)�
(−s)|�|
(−n)|�|

.

This completes the proof. �

Theorem 3.5 (Tight frame for P�
s ). Let n�s. A tight frame for P�

s is given by

f = (n − s)!(|�|)n+s

∑
|�|=n

(�)�
�! 〈f, ��,s

� 〉���,s
� ∀f ∈ P�

s , (3.6)

where

��,s
� := (−1)s

(s + |�| − 1)s

(
n
s

)
(|�| + 2s)n−s

∑
���
|�|� s

(s + |�| − 1)|�|(−�)�(−s)|�|
(�)�(−n)|�|

��

�! (3.7)

is the orthogonal projection of ��/(�)� onto P�
s . We also have

f = (n − s)!
n! (|�|)n+s

∑
|�|=n

〈f, ��,s
� 〉�B� ∀f ∈ P�

s . (3.8)

Proof. It suffices to prove ��,s
� is the orthogonal projection of ��/(�)� onto P�

s , since then (3.3)
gives (3.6) and (3.8).
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First, we prove this for |�| = n = s. In this case

��
� := ��,|�|

� := (−1)s

(s + |�| − 1)s

∑
���

(s + |�| − 1)|�|(−�)�

(�)�

��

�! ∈ ��

(�)�
+ �s−1(R

d). (3.9)

For |�| = s − 1, (|�|)|�|+|�| = (|�|)s−1(|�| + s − 1)|�| (�)�+� = (�)�(� + �)�, and so

〈��
�, �

�〉� = (−1)s

(s + |�| − 1)s

∑
���

(s + |�| − 1)|�|(−�)�

(�)��!
(�)�+�

(|�|)|�|+|�|

= (−1)s

(s + |�| − 1)s

(�)�
(|�|)s−1

∑
���

(−�)�

(�)��! (� + �)�.

By Chu–Vandermonde the last sum above equals (−�)�/(�)� = 0, so ��
� is orthogonal to the basis

{�� : |�| = s − 1} for �s−1(R
d), and hence is the orthogonal projection supposed.

Now, we prove the result for |�| = n�s. By (3.8), for n = s (the case just proved), it follows
that Qs the orthogonal projection onto P�

s is given by

Qsf = (|�|)2s

s!
∑
|�|=s

〈Qsf, ��
�〉�B� = (|�|)2s

s!
∑
|�|=s

〈f, ��
�〉�B� ∀f.

In particular,

Qs(�
�)

(�)�
= (|�|)2s

s!
∑
|�|=s

〈
��

(�)�
, ��

�

〉
�
B� = (|�|)2s

s!
1

(�)�

∑
|�|=s

〈��, ��
�〉�B�. (3.10)

Let f = �� = �!
n!B�, |�| = n, g = ��

� = ∑
|	|=s c	B	, |�| = s in Corollary 2.7, to obtain:

〈��, ��
�〉� = (n!)2

(n − s)!(|�|)n+s

〈
�!
n!
�, R

n−sc

〉
�,n

= (n!)2

(n − s)!(|�|)n+s

�!
n! 〈(R

∗
� )n−s
�, c〉�,s . (3.11)

We, therefore, need to calculate ((R∗
� )n−s
�)	 and c	, |	| = s. By (2.4), we have

((R∗
� )j
�)� =

{
(�+�)�−�
(|�|+1)j

j !
(�−�)! , ���;

0 otherwise
= (�)�

(�)�

j !
(|�| + 1)j

(−1)|�|(−�)�

�! ,

so that

((R∗
� )n−s
�)	 = (�)�

(�)	

(n − s)!s!
n!

(−1)s(−�)	

�! , |	| = s. (3.12)

To obtain the Bernstein form ��,s
� = ∑

|�|=m c
�,s
�,�B�, m�s, use the multinomial theorem to

expand (3.7):

��,s
� = (−1)s

(s + |�| − 1)s

(
n
s

)
(|�| + 2s)n−s

∑
���
|�|� s

(s + |�| − 1)|�|(−�)�(−s)|�|
(�)�(−n)|�|

��

�!

×
∑

|
|=m−|�|

(m − |�|)!

! �
.
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The terms in ��, |�| = m (� = � + 
) sum to

(−1)s

(s + |�| − 1)s

(
n
s

)
(|�| + 2s)n−s

∑
���,�
|�|� s

(s + |�| − 1)|�|(−�)�(−s)|�|
(�)�(−n)|�|

��

�!
(m − |�|)!
(� − �)! ��−�.

Since

1

(� − �)! = (−1)|�|
(−�)�

�! , ���, (m − |�|)! = (−1)|�| m!
(−m)|�|

,

this becomes

(−1)s

(s + |�| − 1)s

(
n
s

)
(|�| + 2s)n−s

∑
���,�
|�|� s

(s + |�| − 1)|�|(−�)�(−�)�(−s)|�|
(�)�(−n)|�|(−m)|�|�!

m!
�! ��,

i.e.,

c
�,s
�,� = (−1)s

(s + |�| − 1)s

(|�|
s

)
(|�| + 2s)|�|−s

∑
���,�
|�|� s

(s + |�| − 1)|�|(−�)�(−�)�(−s)|�|
(�)�(−|�|)|�|(−|�|)|�|�! . (3.13)

As a particular case, we have

c	 = c
�,s
�,	 = (−1)s

(s + |�| − 1)s

∑
���,	
|�|� s

(s + |�| − 1)|�|(−�)�(−	)�

(�)�(−s)|�|�! , |	| = s. (3.14)

Combining (3.11), (3.12) and (3.14), we obtain

〈��, ��
�〉� = s!

(|�|)n+s

(�)�
(s + |�| − 1)s

∑
|	|=s

(−�)	

	!
∑
���
|�|� s

(s + |�| − 1)|�|(−�)�(−	)�

(�)�(−s)|�|�!

= s!
(|�|)n+s

(�)�
(s + |�| − 1)s

∑
���
|�|� s

(s + |�| − 1)|�|(−�)�

(�)�(−s)|�|�!
∑
|	|=s

(−�)	

	! (−	)�.

(3.15)

By Lemma 3.4,

∑
|	|=s

(−�)	(−	)�

	! =
∑
|	|=s

��	��

(−�)	(−	)�

	! = (−1)s
(

n

s

)
(−�)�

(−s)|�|
(−n)|�|

. (3.16)

So by (3.10), (3.15) and (3.16), the B�–Bernstein coefficient (|�| = s) of the orthogonal projection
of ��/(�)� onto P�

s is

(|�|)2s

s!
1

(�)�
〈��, ��

�〉� = (−1)s

(s + |�| − 1)s

(|�|)2s

(|�|)n+s

(
n

s

) ∑
���,�
|�|� s

(s + |�| − 1)|�|(−�)�(−�)�

(�)�(−n)|�|�! .
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This equals the corresponding Bernstein coefficient c
�,s
�,� given by (3.13), and so ��,s

� is the or-

thogonal projection of ��/(�)� onto P�
s as claimed. �

The tight frame (3.6) and the representation (3.8) have the desired symmetries. For applications,
one would use the tight frame with the smallest number of vectors, i.e., that for n = s, which
simplifies to

f = (|�|)2s

∑
|�|=s

(�)�
�! 〈f, ��

�〉���
� = (|�|)2s

s!
∑
|�|=s

〈f, ��
�〉�B� ∀f ∈ P�

s ,

where

��
� := ��,|�|

� = (−1)s

(s + |�| − 1)s

∑
���
|�|� s

(s + |�| − 1)|�|(−�)�

(�)�

��

�! , |�| = s. (3.17)

For example, in the univariate case, with �(x) = (1 − x, x) the barycentric coordinates for the
interval [0, 1] and � = (j, s − j), 0�j �s, (3.17) becomes

�(�0,�1)
(j,s−j)(x) = (−1)s

(s + �0 + �1 − 1)s

∑
�0 � j

�1 � s−j

(s + �0 + �1 − 1)�0+�1
(−j)�0

(j − s)�1

(�0)�0
(�1)�1

×(1 − x)�0x�1

�0!�1!
.

This was (with hindsight) easily proved, and can also be proved using [15, Corollary 5.8].
The sum in (3.17) is a multivariate generalisation of the 2F1 hypergeometric function called

the Lauricella function of type A (see [7, �1.2]). In the univariate case (3.17) reduces to the usual
formula for Jacobi polynomials. The history of Theorem 3.5 is as follows. The case n = s was
proved in [14] (unpublished) and is closely connected with results in [12] (see [13]). The simple
proof is new, as are the formulas involving the Bernstein form.

From (3.13) in the proof we have the following.

Corollary 3.18 (Bernstein form of ��,s
� ). The projection of ��/(�)�, |�| = n onto P�

s can be
written

��,s
� =

∑
|�|=m

c
�,s
�,�B�, s�m�n,

where

c
�,s
�,� = (−1)s

(s + |�| − 1)s

(
n
s

)
(|�| + 2s)n−s

∑
���,�
|�|� s

(s + |�| − 1)|�|(−�)�(−�)�(−s)|�|
(�)�(−n)|�|(−m)|�|�! .

Since �n(R
d) is the orthogonal direct sum ⊕n

s=0P�
s , we obtain the following tight frame.
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Corollary 3.19 (Tight frame for �n). A tight frame for �n(R
d) with 〈·, ·〉� is given by

f =
n∑

s=0

(|�|)2s

∑
|�|=s

(�)�
�! 〈f, ��

�〉���
� ∈

n⊕
s=0

P�
s ∀f ∈ �n(R

d), (3.20)

where 〈��
�, �

�
�〉� = 0, |�| �= |�|.

Theorem 3.21 (Projection matrix). The matrix A = (a��) that maps the Bernstein coefficients
of f = ∑

|�|=n c�B� to those of Qsf = ∑
|�|=m (Ac)�B� its projection onto P�

s is given by

a�� = n! (�)�
�! c

�,s
�,�, |�| = m�s, |�| = n.

Proof. Since Qs(B�) = (n!/�!)(�)���,s
� , Corollary 3.18 gives

Qsf = n!
∑
|�|=n

(�)�
�! c���,s

� = n!
∑
|�|=n

(�)�
�! c�

∑
|�|=m

c
�,s
�,�B�

=
∑

|�|=m

⎛
⎝∑

|�|=n

n! (�)�
�! c

�,s
�,�c�

⎞
⎠B�. � (3.22)

For m = s, the entries of the matrix A are given by a multivariate analogue of the 3F2 hyper-
geometric function.

Since (��,s
� )|�|=n spans P�

s , the orthogonal projection of f = ∑
|�|=n c�B� onto P�

s can be
expressed as follows:

Qsf =
∑
|�|=n

(�)�
�! b��

�,s
� ,

where by (3.6) and a result from the theory of frames, the unique coefficients b = (b�) with the
minimal �2-norm are given by

b� = (n − s)!(|�|)n+s〈f, ��,s
� 〉� = (n − s)!(|�|)n+s

∑
|�|=n

〈B�, ��,s
� 〉�c�.

There is a simpler choice for the coefficients b� which gives the projection.

Corollary 3.23. The orthogonal projection of f = ∑
|�|=n c�B� ∈ �n(R

d) onto P�
s , 0�s�n,

is given by

Qsf = n!
∑
|�|=n

(�)�
�! c��

�,s
� . (3.24)

Proof. Apply Qs to f = ∑
|�|=n c�B�. �

Since 〈B�, ��,s
� 〉� �= 0, |�| = |�| = n, (3.24) is not the tight frame representation of (3.6).
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4. Applications and further results

Here, we apply our results to a surface “smoothing” problem considered in [10] (where the
Bernstein form of the Prorial basis was used). We adapt the notation used there.Consider a tri-
angular surface patch of total degree n, expressed both in the Bernstein basis and the tight frame
(3.20),

f =
∑
|�|=n

p�B� =
n∑

s=0

(|�|)2s

∑
|�|=s

(�)�
�! 〈f, ��

�〉���
� =

n∑
s=0

∑
|�|=s

qs
���

�.

Using Corollary 3.18, the coefficients (p�) can be computed from (qs
�). But since (�s

�) is not a
basis there is not a unique choice for a given f. To get a uniqueness, we require that qs

� be the

coefficients given by (3.20), i.e., (|�|)2s(�)�〈f, ��
�〉�/�! = qs

�, which simplifies to

(|�|)2s

(�)�
�!

∑
|�|=s

〈��
�, �

�
�〉�qj

� = qs
�, |�| = s, 0�s�n. (4.1)

Notice that these equations have dependencies (which allows a system with the natural symme-
tries). Assume M linear interpolation conditions have been prescribed

�j (f ) =
n∑

s=0

∑
|�|=s

�j (�
n
�)qs

� = aj , 1�j �M, (4.2)

e.g., specifying the boundary curves. Then the remaining degrees of freedom are used to minimise
a “surface smoothness” integral

J (q
j

� : |�| = j, 0�j �s) :=
∫

T

�(f )��−1,

where �(f ) is quadratic in f and its derivatives. The orthogonality 〈��
�, �

�
�〉�, |�| �= |�| ensures

that the system of equations obtained from the method of Lagrange multipliers takes a simple
form (cf. [10]). The resulting “smoothest” surface obtained is the same as that in [10], with our
calculation treating all vertices equally.

It follows from Corollary 2.7 that repeated applications of R and R∗
� to the Bernstein coefficients

of a Jacobi polynomial take a simple form.

Theorem 4.3. Let f = ∑
|�|=n c�B� ∈ P�

s , n�s. For j, k�0 with n + k − j �0,

(R∗
� )jRkc = (n − s + k − j + 1)j

(n + k − j + 1)2
j

(|�| + n + s + k − j)jR
k−j c, j �k,

(R∗
� )jRkc = (n − s + 1)k

(n + 1)2
k

(|�| + n + s)k(R
∗
� )j−kc, k�j.

Note by Corollary 2.5, (R∗
� )jRkc = 0 if j − k > n − s, i.e., n + k − j > s.
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Proof. Let g = ∑
|�|=n+k−j b�B�. First, suppose j �k. Then, by two applications of Corollary

2.7, we have:

〈f, g〉� = ((n + k − j)!)2

(n + k − j − s)!(|�|)n+k−j+s

〈Rk−j c, b〉�,n+k−j

= ((n + k)!)2

(n + k − s)!(|�|)n+k+s

〈Rkc, Rjb〉�,n+k

= ((n + k)!)2

(n + k − s)!(|�|)n+k+s

〈(R∗
� )jRkc, b〉�,n+k−j .

Since b is arbitrary, the first arguments in the inner products 〈·, b〉n+k−j are equal, giving

((n + k)!)2

(n + k − s)!(|�|)n+k+s

(R∗
� )jRkc = ((n + k − j)!)2

(n + k − j − s)!(|�|)n+k−j+s

Rk−j c

as supposed. Similarly, for k�j , use

〈f, g〉� = (n!)2

(n − s)!(|�|)n+s

〈c, Rj−kb〉�,n = (n!)2

(n − s)!(|�|)n+s

〈(R∗
� )j−kc, b〉�,n+k−j

= ((n + k)!)2

(n + k − s)!(|�|)n+k+s

〈Rkc, Rjb〉�,n+k

= ((n + k)!)2

(n + k − s)!(|�|)n+k+s

〈(R∗
� )jRkc, b〉�,n+k−j . �

For Legendre polynomials (� = 1) and j �k this appears as Lemma 8 in [10].
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